Python Parameters and Arguments

posted 10 min read

Parameters and arguments are the fundamental building blocks of function efficiency and variety in programming. This subject explores the basic ideas and recommended techniques that support efficient function design in Python, from setting parameters to passing arguments and understanding their interactions. Let's examine details of arguments and parameters and how they strengthen Python programs.

Table of Contents: 

Importance of parameters and arguments in functions

Functions operate on data, and they can receive data as input. These inputs are known as parameters or arguments. Parameters provide functions with the necessary information they need to perform their tasks. Consider parameters as values you pass to a function, allowing it to work with specific data, while arguments are the actual values passed to the function when it is called.

Parameters in Python Functions

1. Syntax for defining parameters in function declarations

The function name is followed by brackets defining the parameters. Here is the syntax:

def greet(name):
    print ("hello, ", name)

2. Different types of Parameters

Parameters are like inputs for functions. When defining the function, they are enclosed in parenthesis. They can have multiple parameters.

A. Positional Parameters

Positional arguments are passed to a function in the order they're defined in the function signature. They are defined in the function header and matched with arguments based on their position.

def greet(name, greeting):
    return f"{greeting}, {name}!"
# Positional arguments
message = greet("Alice", "Hello")
print(message)  # Output: Hello, Alice!

In this example, "Alice" is assigned to the 'name' parameter, and "Hello" is assigned to the 'greeting' parameter based on their positions.

B. Keyword Parameters

Keyword arguments are explicitly assigned to parameters by specifying the parameter name followed by the value during function invocation. This allows for flexibility in the order of arguments.

def greet(name, greeting):
    return f"{greeting}, {name}!"
# Keyword arguments
message = greet(greeting="Hi", name="Bob")
print(message)  # Output: Hi, Bob!

C. Default Parameters

The function definition specifies default values for the arguments. In the event that a parameter during function call is called without an argument, the default value is used.

def greet_with_default(name, greeting="Hello"):
    return f"{greeting}, {name}!"
# Using default value
message = greet_with_default("Charlie")
print(message)  # Output: Hello, Charlie!

In this example, "Hello" is the default value for the 'greeting' parameter. When no value is provided for 'greeting', it defaults to "Hello".

D. Variable-length parameters (*args)

A function can take any number of positional arguments with variable-length parameters, indicated by *args. The function treats args as a tuple that holds each positional argument that was passed to it.

def sum_values(*args):
    return sum(args)
print(sum_values(1, 2, 3, 4, 5))  # Any number of arguments

Output:

E. Keyword variable-length parameters (**kwargs)

Keyword variable-length parameters, denoted by **kwargs, allow a function to accept any number of keyword arguments. Inside the function, kwargs is treated as a dictionary containing all the keyword arguments passed to the function.

def display_info(**kwargs):
    for key, value in kwargs.items():
        print(f"{key}: {value}")
display_info(name="Alice", age=30, city="New York")  # Any number of keyword arguments

Output:

Tip: Use default parameter values for optional arguments to provide sensible defaults, but avoid overusing them, as they can lead to unexpected behaviour.

Arguments in Python Functions

1. Syntax for passing arguments to functions

Arguments are passed within the parentheses when calling a function. Here is the syntax:

def my_function(arg1, arg2)

2. Different types of Arguments

Different types of arguments are explained below:

A. Positional Arguments

Arguments that are passed to a function based on their position.

def greet(name, greeting):
    print(f"{greeting}, {name}!")
greet("Alice", "Hello")  # Positional arguments

B. Keyword Arguments

Values passed to a function with their respective parameter names.

def greet(name, greeting):
    print(f"{greeting}, {name}!")
greet(greeting="Hello", name="Alice")  # Keyword arguments

C. Passing arguments by reference vs. by value

All arguments in Python are passed by reference, which means that pointers to the objects passed as arguments are sent to the function. However, because they cannot be changed in place, immutable types act as though they are passed by value.

def modify_list(lst):
    lst.append(4)
my_list = [1, 2, 3]
modify_list(my_list)
print(my_list)  # Output: [1, 2, 3, 4]

Parameter and Argument Interactions

A function's signature is defined by its parameters, which specify the data that the function expects receiving. In line with the parameters specified in the function declaration, arguments are the actual data that is passed to the function when it is called. How functions behave with information received depends on the connection between parameters and arguments.
Order of Parameter and Arguments:
The order of arguments given during a function call must correspond with the order of parameters in the function definition. Positional arguments have to be given in the same order as the definition of the parameters. However, order doesn't matter in keyword arguments.

def greet(name, greeting):
    print(f"{greeting}, {name}!")
greet("Alice", "Hello")  # Positional arguments
greet(greeting="Hello", name="Alice")  # Keyword arguments

1. Mixing positional and keyword arguments

Python permits function calls to combine positional and keyword parameters. But, It prioritises the mapping of positional arguments to their parameter names before the mapping of keywords. The code is as followed:

def greet(name, greeting):
    print(f"{greeting}, {name}!")
greet("Alice", greeting="Hello")  # Mixing positional and keyword arguments

Output:

2. Handling default parameters and arguments

Default parameters allow some parameters to have default values if corresponding arguments are not provided during the function call. This provides flexibility and simplifies function calls when default behaviour is desired.

def greet(name, greeting="Hello"):
    print(f"{greeting}, {name}!")
greet("Alice")  # Using default value for greeting
Caution: Be mindful of mutable default parameter values in Python functions, since they cause due to shared references across function calls.

Common Pitfalls and How to Avoid Them

Here are some common pitfalls that causes error. Use the provided tip to avoid them when working with functions in Python:

  1. Problem: Mutable default parameters can cause unexpected behaviour
    • Solution: Use immutable objects (e.g., None) as defaults and create the mutable object inside the function if needed.
  2. Problem: Unexpected behaviour or problems may arise from function calls that do not unpack iterable objects.
    • Solution: Use the '*' and '**' operators to unpack iterable objects when calling functions.
FAQ
Q: What happens if I pass too many arguments to a function?
A: If you pass more arguments than the function expects, you'll encounter a 'TypeError' indicating that the function received too many arguments.

Conclusion

In conclusion, understanding parameters and arguments in Python functions is essential for writing efficient and flexible code. Understanding their syntax and types, including positional, keyword, default, and variable-length parameters, empowers developers to create flexible and efficient functions.
Understanding the interplay between parameters and arguments, is crucial for writing clean, readable, and maintainable code.

Reference

Here are some recommended links for more reference:

If you read this far, tweet to the author to show them you care. Tweet a Thanks

More Posts

Python Functions

Muzzamil Abbas - Mar 6

Python Return Statement

Muzzamil Abbas - Mar 6

Python Lambda Functions

Muzzamil Abbas - Mar 5

Understanding the Functions: Return Statement

Muzzamil Abbas - Mar 3

Git and GitHub for Python Developers A Comprehensive Guide

Tejas Vaij - Apr 7
chevron_left